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Biobanks linked to electronic health records provide rich resources for
health-related research. With improvements in administrative and informatics
infrastructure, the availability and utility of data from biobanks have dramati-
cally increased. In this paper, we first aim to characterize the current landscape
of available biobanks and to describe specific biobanks, including their place
of origin, size, and data types. The development and accessibility of large-scale
biorepositories provide the opportunity to accelerate agnostic searches, expedite
discoveries, and conduct hypothesis-generating studies of disease-treatment,
disease-exposure, and disease-gene associations. Rather than designing and
implementing a single study focused on a few targeted hypotheses, researchers
can potentially use biobanks' existing resources to answer an expanded selec-
tion of exploratory questions as quickly as they can analyze them. However,
there are many obvious and subtle challenges with the design and analysis of
biobank-based studies. Our second aim is to discuss statistical issues related to
biobank research such as study design, sampling strategy, phenotype identifica-
tion, and missing data. We focus our discussion on biobanks that are linked to
electronic health records. Some of the analytic issues are illustrated using data
from theMichiganGenomics Initiative andUKBiobank, two biobanks with two
different recruitmentmechanisms.We summarize the current body of literature
for addressing these challenges and discuss some standing open problems. This
work complements and extends recent reviews about biobank-based research
and serves as a resource catalog with analytical and practical guidance for statis-
ticians, epidemiologists, and other medical researchers pursuing research using
biobanks.
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1 INTRODUCTION

Biobanks linked to detailed disease phenotype information such as electronic health records (EHR) provide
rich data resources for health-related research. Biobanks, loosely defined, are biorepositories that accept, pro-
cess, store and distribute biospecimen and/or associated data for use in research and clinical care.1 The
rise in the number and size of biobanks across the world in recent years can be explained by improve-
ments in biospecimen analysis and the need for large and holistic datasets to address complex diseases and
conditions.1,2 Many types of biobanks exist, including commercial, single medical center, health system-based, and
population-based biobanks. Some biobanks are disease- or organ-specific, while others encompass an extensive breadth of
diseases.

Biospecimens are increasingly being linked with their donor's EHR. An individual's EHR contains basic demo-
graphic characteristics as well as data on symptoms, medical history, behavior and lifestyle factors, physical exami-
nations, diagnoses, tests, procedures, treatments, medications, referrals, admissions, and discharges.3 In addition to
the structured data, there exist clinical notes, images, and other unstructured components of an EHR. An EHR
is maintained by a health care provider primarily to plan and document care and to assess patient outcomes.3
EHR are distinct from medical and pharmacy claims data, which are maintained by insurance companies. Phar-
macy and claims data include billing codes assigned during visits, diagnoses, tests and procedures administered
(but usually not test results) from any provider an insured individual interacts with along with prescription
data, including dates of when prescriptions are filled or refilled. There are ongoing efforts to link claims data
with EHR data to have both a “broad” as well as “deep” view of an individual's encounters with the health
system. The possibility to link EHR with biospecimen, insurance and prescription claims, national disease reg-
istries, and death indices, creates the potential for generating an incredibly rich, longitudinal database for health
researchers.

Access to such integrated data frames enables researchers to bypass expensive data collection and provide a
quick, cost-effective option to explore associations related to diagnosis, patient-reported outcomes, prognosis, treat-
ment response, and survival. While some of the questions answered using biobanks have been driven by a priori
biological hypotheses, such biorepositories also allow for agnostic (“hypothesis-free”) interrogations, new discov-
eries, and hypothesis-generating studies. Phenome-wide association studies (PheWAS), first introduced in Denny
et al,4 which explore the associations between a single genetic variant of interest and many EHR-derived pheno-
types, are one example that highlights the power of phenotype-linked biobank data. PheWAS can be used to repli-
cate known associations and has the potential to discover novel and previously unknown associations for further
research.4

The growth and evolution of research around biobanks have led to thoughtful and accessible literature on the topic.
Recent reviews briefly discuss statistical and computational considerations for studies involving genetic data,5 limita-
tions of traditional study designs, identifying real-world phenotypes,6,7 and EHR enabled database linkages in making
pharmacogenetic discoveries.8 These reviews are limited in their discussion of statistical methods related to biobank and
EHR-based research and, in particular, their exploration of critical concepts such as study design, sampling, missing data,
and other analytic issues.

In this paper, we complement and extend recent reviews about biobank-based research with the ultimate goal of
providing an extensive catalog of resources with analytical, conceptual and practical guidance to statisticians, epidemiol-
ogists, and othermedical researchers pursuing biobank-based research.Wewill focus on EHR-linked biobanks, butmany
of the topics covered are relevant to other biobanks with detailed self-reported disease history information instead of
medical records.9 In Section 2, we characterize different types of biobanks and provide descriptions of specific biobanks,
including their geographic location, size, data access and availability, data linkages, and more. In Section 3, we discuss
general statistical issues related to EHR-linked biobank research, including study design, sampling strategy, pheno-
type identification, and missing data. We illustrate some of these issues using data from two biobanks: the Michigan
Genomics Initiative (MGI)10,11 and the UK Biobank (UKB).12,13 In Section 4, we mention potential opportunities and
promising future directions for expanded and principled biobank-based research through a discussion of novel and emerg-
ing uses of EHR data, the creation of improved analytic infrastructure, and the integration of EHR with external data
sources.



2 A CHARACTERIZATION OF MAJOR BIOBANKS

In this section, we describe the types of biobanks that are frequently discussed in the literature and provide detailed
descriptions for several existing biobanks. An in-depth discussion of the literature search algorithm used to conduct
this review is in Supporting Information Section S1. To get a sense of the existing landscape, Section S2 enumerates the
common health outcomes receiving attention in the biobank literature. A table summarizing the differences in target
populations, potential biases, EHR quality, and inferential goals between population-based and medical center/health
care system-based biobanks can be found in Section S3. The rationale for providing this detailed Supporting Information
is to create a comprehensive set of resources describing features of various biobanks for a researcher interested in pursuing
new lines of inquiry using such data.

2.1 Existing biobanks

Table 1 describes some notable major biobanks with detailed disease phenotype data in terms of their size, location,
type, and data access. This table extends the biobank descriptions in Wolford et al to include additional informa-
tion about data linkages and cohort characteristics, and it includes information for a broader set of biobanks.5 Many
of the biobanks listed in Table 1 provide access to data for outside researchers, while some offer linkages to addi-
tional data sources, such as death registries and detailed prescription information. The biobanks in Table 1 often
fall into two general categories: population-based biobanks and medical/health care system-based biobanks. While
we attempt to categorize biobanks that share important characteristics, there is substantial heterogeneity within
each category. As with any data source, researchers should understand who the participants are, whom the data
represents, how the data were collected, and how these factors impact the breadth, depth, quality, and quantity
of data.

2.1.1 Population-based biobanks

Population-based biobanks are large-scale biorepositories that aim to recruit subjects reasonably representative of
the source population. Population-based biobanks recruit directly from the general population (eg, China Kadoorie
Biobank), and subjects are eligible for enrollment irrespective of their disease status or healthcare utilization. Estonia,14,15
Denmark,16 Sweden,17 Saudi Arabia,18 China,19 the Republic of Korea,20,21 Qatar,22,23 and Taiwan24,25 are some of
the countries that have invested in establishing population-based (or reasonably representative) biobanks. Their sam-
pling strategy may include active recruitment for particular subpopulations; for example, BioBank Japan26 recruits
patients with particular current or past disease status, and the NIH All of Us27 program’s recruitment strategy targets
underrepresented minorities.

Perhaps the most well-known population-based biobank is the UKB (used in illustrative examples in this paper).12
With approximately 500 000 subjects, it is one of the largest biobanks in the world. All residents aged 40 to 69 who lived
within 25miles of one of their 22 assessment centers (∼9.2million people) were invited to participate.13 UKB takes advan-
tage of the UK National Health Service to obtain follow-up data (eg, mortality, cancer registrations, hospital admissions,
primary care data) and actively collect and verify conditions that are typically under-reported (eg, cognitive function,
depression).13 These data are linked with genetic, biomarker, and, for some, imaging data, all of which are accessible for
research use.

2.1.2 Health care system or medical center-based biobanks

Another class of biobank is based on a particular medical center or health care system. In general, health system-based
biobanks, such as Vanderbilt's BioVU biobank or Geisinger Health's MyCode Community Health and DiscovEHR ini-
tiatives, contain EHR and genotype data while others, like Partners HealthCare Biobank, also collect supplemental
survey data. Some, like the large Kaiser Permanente Research Bank (KPRB), have additional linkages with detailed
prescription information and feature-specific subcohorts (eg, pregnancy and cancer cohorts in the case of KPRB).
A notable health-system based biobank is the Million Veteran Program. With already more than 600 000 enrolled,
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it is one of the world's largest genomic biobanks and also allows for the investigation of military-related diseases
and conditions. Other such biobanks recruit patients from a distributed network of health centers throughout the
country.

MGI (used in illustrative examples) is an academic medical center-based biobank that started at the Uni-
versity of Michigan in 2012. It recruits surgical patients over the age of 18 using opt-in consent (allowing
recontact for future research purposes), collects and stores blood samples, genotypes DNA samples, collects brief
survey data related to pain, and is linked to EHR. This biobank can connect patient data to other data sources,
including the cancer registry, prescription data, insurance claims, and the national death index. A very appealing
feature of MGI is the consent of patients for future recontact. The biobank is also undergoing an effort to imple-
ment an extensive epidemiologic questionnaire designed to be comparable to other biobank survey data, namely
the UKB.

Formedical center andhealth system-based biobanks, it is crucial to understandhow the participants are recruited and
what type of services the health center/systemprovides. Participants recruited as surgical patients in a specializedmedical
center will often have very different breadth and depth of data available compared to those recruited from a general
clinic at an integrated health system that serves as the patient's primary provider and offers a wide array of preventive
services.

2.1.3 Other types of biobanks

Initially planning to become the first nationwide biobank, deCODE Genetics is now a privately-owned commercial
biobank. Launched in 2007 and funded by the National Human Genome Research Institute (NHGRI), the Electronic
Medical Records and Genomics (eMERGE) Network combines a network of DNA biorepositories linked with EHR as a
resource for genetic analyses. Disease-specific biobanks are also common, and these biobanks may focus on rarer condi-
tions. Two examples are PcBaSe Sweden,28 a prostate cancer cohort, and the Mayo Clinic Biobank for bipolar disorder.29
While disease-specific biobanks may be better powered than other biobank types to study certain diseases, they are
typically smaller in size and do not allow us to examine the associations and disease pathways across the medical
phenome.

Biobank is a broad term that includes biobanks that are not linked to EHR. Many biobanks obtain disease and phe-
notype status through other means (usually self-reported through surveys).9 Many of the analytic challenges discussed
in this paper also apply to these non-EHR-linked biobanks that contain disease status and other behavioral and genotype
data. We restrict our attention to solely EHR-linked biobanks.

In this section,we introduced the concept of biobanks, described somekey characteristics of different types of biobanks
while providing detail on somemajor biobanks, and provided summary information regarding data access and availability
(Table 1). These are critical considerations for downstream statistical analysis

3 STATISTICAL ISSUES RELATED TO BIOBANK RESEARCH

In this section, we discuss statistical issues and strategies for EHR-linked biobank data analysis following a general
workflow for a well-designed research study. In Figure 1, we provide a flowchart describing the steps researchers gen-
erally take while conducting a study. The development of the research question, clarification of study goals, selection
of study sample, and definition of the target population are critical stages of this process. With vast amounts of data
becoming increasingly available, there is a tendency for researchers to try a large number of analyses and broadly
define their research question based on an analysis that shows something interesting. This strategy is at odds with
good statistical practice. We make a distinction between this strategy and large-scale agnostic hypothesis-generating
studies such as PheWAS, where the research goal itself is to generate hypotheses or potential associations for future
study.

Given our research question and data availability, the next step is generally to identify potential sources of
bias. In this section, we describe several particular concerns of confounding bias, selection bias, and misclas-
sification of EHR-derived phenotype variables. We then describe challenges and strategies for study design and
discuss methods for data analysis, including modeling, correction for multiple testing, and handling of missing
data.



Clarify Study Goal

Hypothesis Testing

EstimationPrediction

Identify Potential

Sources of Bias

Misclassification

Confounding Selection Outcomes Exposures

Additional Adjustment Factors

Define Study Variables

Define Study Sample
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Data Analysis

Modeling Missing Data

Multiple Testing

Develop Research Question

Define Target Population

F IGURE 1 Flowchart of study planning, design,
and analysis [Color figure can be viewed at
wileyonlinelibrary.com]

3.1 Potential sources of bias

3.1.1 Selection bias due to nonprobability sampling

One challenge for research using EHR-linked biobank data is that the mechanism by which a patient from the popula-
tion enters the biobank and when a visit appears in the EHR is often unknown and inherently patient-driven.30,31 This
phenomenon, called nonprobability sampling, has been studied extensively in the statistical literature, and certain mech-
anisms governing self-selected patient recruitment can introduce bias.32 The extent to which the selection mechanism
impacts study results depends on the estimand of interest and remains an open question.

The selection mechanism by which patient data are collected may vary widely across biobanks. Population-based
biobanks are often large and obtain participants from a network of health or administrative centers across each country
with the goal of being reasonably representative of the entire population. However, individual characteristics such as liv-
ing near an assessment center (eg, UKB) or living in a specific region of interest (eg, China Kadoorie) may still impact
inclusion. In contrast, medical center and health system-based biobanks attempt to recruit all patients meeting specific
criteriawithin the center/health system, often through selected clinics. Generally, participation in these biobanks requires
patients to use healthcare, which is indicative both of ability to access healthcare (eg, ability to overcome barriers to access
including transportation and insurance) and health (ie, people with diseases and chronic conditions are more frequent
users of healthcare). Compared to population-based biobanks, academic medical center-based biobanks tend to see more
patients with rare or complicated diseases due to the availability of specialty care and, thus, are often useful for investigat-
ing rare conditions. For example, MGI10,11 is enriched for analyses of some cancer types, most notably melanoma of the
skin, since Michigan Medicine is known for its skin cancer treatment and care. In all cases, the data generating mecha-
nisms have the potential to induce selection and participation biases into the analysis. These biases can have implications
on the generalizability of the results and impact measures of association.33 For guidelines and suggestions for diagnosing
and handling nonprobability sampled data, we refer the reader to an American Association for Public Opinion Research
task force report on nonprobability sampling.34

As a simple demonstration of the impact of different selection mechanisms, we consider prevalence rates for
different disease phenotypes in two biobanks: MGI and UKB. As mentioned previously, MGI is a biobank of over
60 000 patients treated at an academic medical center. Patients in MGI were most commonly recruited through the

http://wileyonlinelibrary.com


Anesthesiology department as patients were preparing to have a surgical procedure. The UKB is a population-based
collection of over 500 000 patients. Table 2 provides comparisons of the patients in MGI and UKB in terms of demograph-
ics. Disease statuses were defined for MGI and UKB using aggregated versions of ICD codes, called PheWAS codes or
phecodes.35 This method of phenotype classification resulted in 1681 phecodes that are present in both MGI and UKB. A
description of the phenotype generation process can be found in Section S5.

The different selection mechanisms in the various biobanks have implications for the observed disease prevalences
across disease categories. Figure 2 shows the ratios of prevalences of various phenotype codes in MGI and UKB within
different disease categories. We see that the majority of the prevalences are higher in MGI. In particular, prevalences
for neoplasms, symptoms, endocrine/metabolic disorders, infectious diseases, and congenital anomalies are uniformly
higher for MGI compared to UKB. Table 3 presents prevalences of some particular diseases in MGI and UKB along with
published prevalences for their corresponding nationwide populations.MGI often captures subjectswithmany conditions
at a higher rate than is observed in the general US population. The UKB has higher case counts than MGI for several
conditions due to its size. The UKB is also often more representative of the rates observed in the population (at least for
conditions common among ages 40 to 69, the age range of participants in UKB), with exceptions discussed in Section S6.

3.1.2 Confounding bias

Measured and unmeasured confounding are common sources of bias in observational data. Careful use of existing ana-
lytical tools can help reduce or eliminate biases resulting from confounding. Here, we define a confounder as a variable

TABLE 2 Comparison of MGI and UKB patient populations

MGI (academic medical center) UKB (population-based)

Sample Size, n 30 702 408 961

Females, n (%) 16 297 (53.1) 221 052 (54.1)

Mean age, years (SD) 54.2 (15.9) 57.7 (8.1)

Median number of visits per participant 27 n/aa

Median days between first and last visit 1469 n/aa

Mean body mass index (SD) 29.7 (7.0) 27.4 (4.8)

Ever smoked, n (%) 17 044 (55.5) 246 320 (60.2)

aData unavailable for UKB.

F IGURE 2 Boxplots of ratio
of PheWAS code prevalences in MGI
VS UK Biobank across phenome
[Color figure can be viewed at
wileyonlinelibrary.com]
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TABLE 3 Prevalences of selected conditions in the Michigan Genomics Initiative and UK Biobank along with estimates from their
respective national populationsa

MGI (academic medical center) United States UKB (population-based) United Kingdom

N = 30 702 N = 408 961

Psychiatric/neurologic

Depression 21.7 (6651) 16.9** 2.9 (11 918) 3.3†

Alzheimer's 0.2 (60) 1.6*** 0.1 (433) 1.3‡

Anxiety* 22.1 (6782) 31.2**** 1.6 (6945) 5.9†

Schizophrenia 0.3 (78) .7-1.5 0.1 (573) 0.2-0.59§

Bipolar Disorder 2.9 (886) 4.4**** 0.2 (1064) 2.0†

Cardiovascular disease

Atrial fibrillation 9.5 (2919) 2-9 3.6 (14 839) 1.2-1.3

Coronary heart disease 14.3 (4396) 6 5.0 (20 539) 3-4

Myocardial infarction 5.5 (1702) 4.7** 3.0 (12 099) .87-2.46

Obesity 33.7 (10 351) 39.8 2.6 (10 820) 26.2

Diabetes 21.4 (6571) 12.6 5.0 (20 260) 6.2

Cancer

Colorectal 2.6 (806) 4.2**** 1.1 (4627) 5.3-7.1****

Breast (female) 12.4 (2025) 12.4**** 5.7 (12 680) 12.5****

Lung 2.3 (707) 6.2**** 0.5 (2243) 5.9-7.7****

Pancreatic 1.0 (313) 1.6**** 0.2 (749) 1.4****

Melanoma of skin 6.2 (1896) 2.3**** 0.7 (2724) 1.9 ****

Prostate (male) 12.4 (1794) 11.2**** 3.6 (6762) 12.5****

Bladder 3.7 (1147) 2.3**** 0.6 (2433) 0.9-2.6****

Non-Hodgkins lymphoma 3.1 (937) 2.1**** 0.4 (1827) 1.7-2.1****

Notes: Ranges for schizophrenia represent the minimum and maximum point estimates from several estimates included in the source material; ranges for
myocardial infarction and cancer estimates provided indicate the range of sex-specific point estimates; lack of representativeness in UKB for obesity
phenotype discussed in Section S6.
*Any anxiety disorder; **adults 40 and older; ***adults 65 and older; ****lifetime risk of developing disease/condition; †past week prevalence, refers to the
presence of symptoms in the past week; ‡point prevalence, refers to the prevalence measured at a particular point in time (proportion of persons with a
particular disease at a point in time); §estimate is from England.
Sources for US and UK estimates can be found in Table S4.
aPhenotypes were defined using ICD-based PheWAS codes35 for MGI and UKB. A description of the phenotype definitions can be found in Section S5.

that impacts both our outcome and our predictor(s). Failure to adjust for the confounder may result in biased inference
regarding the association between the predictor and the outcome. Confounding is of particular concern for EHR data as
some well-established measures routinely collected in population-based studies may not be available. In the EHR setting,
confounders of interest (eg, comorbidities) may also often be crudely measured, incomplete, or not measured at all. On
the other hand, many potential confounders may be extracted from an EHR database, and variable selection to identify
important confounders or adjusting for a high dimensional confounder set in the analysis model are issues specific to
EHR studies.36,37

There are many analytical strategies in the statistical literature for dealing with confounding. Popular methods for
general observation studies include adjusting for or stratifying analyses by confounders,38 selection propensity weighting,
and adjustment and matching on known confounders. Because of the large sample sizes, matching or stratification with
respect to levels of confounders still may entail adequate power for a specific hypothesis, leading to new design issues to
consider in such studies. Techniques in causal inference such as instrumental variable analysis can also be used to address
issues of confounding in EHR.39,40 Recently, researchers have used particular genetic variants as instrumental variables
in analyses relating variables such as hormone levels to phenotypes of interest.41 Mendelian randomization analysis is



then used to explore potential causal relationships.42 Marginal structural models can be used to address confounding
by time-dependent variables and has recently been applied to EHR in Sperrin et al.43,44 Techniques for reducing and
eliminating confounding often assume that the potential confounders aremeasured.When key confounders are not mea-
sured, sensitivity analyses and related statistical methods can be used to explore the impact of and to correct for potential
unmeasured confounding.45-48

3.1.3 Defining the phenome

A central challenge for research involving EHRs is in defining phenotypes. The data available falls into two broad
categories: structured and unstructured. Some examples of structured data are billing and procedure codes, numeric
lab and test results, and prescription information. Some examples of unstructured data are narrative notes made by
physicians/nurses, radiological/pathological notes, and images.

ICD9 and ICD10 diagnosis codes are the most common source for defining phenomes. They are universally defined,
which make them appealing (although there may be differential usage across institutions).49 Incorporating other struc-
tured data, such as continuous lab values, is more challenging and may require pre-processing. The development and
use of automated algorithms for making these data useful for phenotyping are essential.50 Additional expert input (eg,
through a consortium) can be used to create phenotype definitions, however, establishing a well-accepted definition
requires time, careful thought, and discussion. The eMERGE Phenotype Knowledgebase51 (PheKB) details existing phe-
notyping algorithms for individual phenotypes that incorporate additional patient information. Due to the complexity
of these phenotyping algorithms, the simpler ICD-based phenotyping method is common for PheWAS studies, but the
incorporation of these external phenotyping resources may help improve phenotype definitions in the future.

Unstructured data have also been used to define phenotypes, particularly for diseases with unreliable ICD9 classifica-
tions such as some psychiatric diseases, using natural language processing methods.52-60 Such methods can also be used
to obtain patient measures such as smoking status.52 Natural language processing methods mine free text such as narra-
tive doctor's notes for words or phrases to develop a model combining structured and unstructured data to classify each
patient as having or not having the phenotype of interest.52,53 Some challenges include dealing with misspellings, tenses,
alternative phrasing, negation, and defining a trained dictionary of words and phrases that may correspond to a particular
phenotype. Algorithms are usually trained using expert annotations, but new methods have attempted to automate this
step as well.58,59 Additional machine learning methods have also been used to define phenotypes (eg, imaging analytics
from medical imaging datasets) using a broad spectrum of patient information.61-63

Recent works propose phenotyping strategies to overcome hurdles using multiple data sources to more accurately
ascertain disease status.64-72 However, future work is needed to provide statistical methods for incorporating data of
different types for phenome generation. For a detailed review of phenotyping procedures, see Bush et al.7 Figure S8
provides some examples of the types of structured and unstructured EHR information that can be used to construct
phenotypes.

3.1.4 Misclassification and information bias

Whilewehave discussedmethods for theassignment of phenotype status, there existmanynuanced challenges to consider
when before analyzing these data. Disease status determination is usually performed across subjects who have different
lengths of follow-up time, who have different numbers of visits, and who are being seen in different types of medical
clinics. The EHR cannot capture future diagnoses, and information on past medical history and treatment by external
providers may be incomplete. Generally, the observation process can be complicated and may be related to patient- and
provider-specific information such as gender and underlying disease status (Figures S3-S5).73,74 Misclassification of the
disease status may depend on this observation process, where subjects followed for a longer period of time or more often
may bemore likely to have their disease recorded in themedical record. Some statistical tools have been developed to try to
deal with outcome misclassification and related issues, but computational restrictions may make these methods difficult
to apply to large-scale biobank data.57,75 In addition, symptoms occurring between visits may not always be reported, and
the use of diagnostic guidelines and assessment of the phenotype may vary from doctor to doctor.76,77 These underlying
patient- and provider-specific properties are often ignored when classifying subjects as cases and controls for a particular
disease.



ICD-based phenotype misclassification is common for psychiatric disorders, where a diagnosis can be particularly
challenging.55,76 For diseases with burdensome treatments such as cancer, we may expect that all subjects receiving a
cancer diagnosis truly do have cancer, and there may be only a few cancer cases without a corresponding ICD code. In
contrast, ICD codes for psychiatric disorders such as anxiety may be sometimes attributed to some subjects that do not
meet the ICD definitions for the disorder. There may also be a tendency for patients to receive ICD classifications that
result in reimbursement from the insurance provider. Additionally, disease ICD codes are sometimes assigned when a
disease is suspected prior to further diagnostic testing, so it may be unclear whether a given ICD code refers to the final
diagnosis.7,78

Figure 3 provides a visualization of the relationship between phecode-based diagnosis and the length of follow-up in
MGIwithin age strata for anxiety and heart attack.We observe a greater rate of anxiety diagnoses among subjects followed
for a longer period of time. Many factors may contribute to this, but one explanation is that more anxiety diagnoses are
missed in subjects followed for a shorter period of time. In contrast, the proportion of subjects with a heart attack phecode
was not appreciably related to the length of follow-up, and these acute events are captured when they happen.

Phenotypemisclassification can result in bias (“information bias”) andnegatively impact the statistical power to detect
associations. Differential misclassification of disease status can also result in inflated type I error.79 The extent of mis-
classification can be described using quantities such as sensitivity, specificity, and negative and positive predictive values
(provided a gold standard exists for comparison). Researchers have exploredmethods for incorporating external informa-
tion about sensitivity/specificity to account for outcome misclassification.80-82 However, these quantities can vary from
population to population and from phenotype to phenotype, and it is difficult to know the extent of phenotype misclassi-
fication in a particular population without performing further phenotype validation.82,83 Among other examples,57,82,84-86
Beesley et al proposed a sensitivity analysis approach for exploring the potential impact of phenotype misclassification
and disease-dependent patient selection on logistic regression effect estimates simultaneously.33

We demonstrate the potential bias induced by phenotype misclassification and disease-dependent patient selection
using data from MGI in Figure 4. We consider a logistic regression model for whether the patient was diagnosed with
cancer and the association of having cancer with gender. On the entire sample, we estimate the gender odds ratio as 0.89
(95% CI: 0.85, 0.93). We suppose the observed cancer diagnosis status is the truth and artificially induce misclassification
and disease-dependent selection of the MGI patients. We then calculate the corresponding association between gen-
der and the misclassified outcome in the selected patients. We impose misclassification under 90% specificity and ∼70%
sensitivity, and subsampling was imposed under an average 50% sampling rate for the entire cohort. If we compare the
three analyses without any outcome misclassification, we see that subsampling dependent only on disease status does
not induce bias in the association estimate (OR 0.89, 95% CI: 0.82, 0.94), but it does result in a less efficient estimate
due to the smaller sample size. However, we do see bias when subsampling depends on both disease status and gender
(OR 1.01, 95% CI: 0.95, 1.08). This provides a demonstration of biases expected under different sampling mechanisms.

(A) Anxiety (B) Heart Attack

F IGURE 3 Relationship between (A) anxiety or (B) heart attack diagnosis and length of follow-up within age strata in MGI.
Plotted intervals indicate 95% confidence intervals for each proportion [Color figure can be viewed at wileyonlinelibrary.com]
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F IGURE 4 Impact of selection mechanism and
phenotype misclassification on estimated association
between gender and cancer diagnosis in MGI. 95%
confidence intervals are plotted[Color figure can be viewed
at wileyonlinelibrary.com]
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Additionally, when we compare the odds ratio estimates for a particular subsampling setting, we see that outcome
misclassification is associated with bias in all settings, and this bias is not always towards the null.

3.2 Study design

3.2.1 Defining the study sample

A vital issue to consider when performing a biobank-based investigation is study design. Design choices can have
implications for the analysis and interpretation of the study results. In this section, we describe several approaches for
study design used in biobank research and describe some design-based strategies for dealing with common sources
of bias.

Within pre-existing biobanks, researchers seek to sample patients for inclusion in a particular study. A com-
mon study design involves phenotype-specific case-control sampling, where all observed cases for a particular phe-
notype are selected and some subset of (possibly matched) controls for that phenotype are sampled from the
biobank.10,87 Cases are often defined as subjects receiving a particular diagnosis code a prespecified number of
times, for example, twice. An advantage of case-control sampling is that it does not require additional longitudinal
information and instead relies on dichotomized phenotypes, but it is heavily dependent on the “case” and “con-
trol” definitions. One crucial aspect of case-control sampled data is the validity of secondary analyses of related
outcomes, and many methods exist for addressing this issue.88-91 In addition, the choice of controls should be con-
sidered carefully. Controls might be defined as all patients without the primary phenotype, or we may exclude
patients with related diseases from being included as controls. Another common practice is to restrict the analysis
to patients with a certain amount of follow-up, which can bias sampling toward sicker patients.92 In the presence
of many competing control definitions, one strategy is to evaluate internal validity by performing inference using
many different control group definitions to “bracket” the association of interest.93,94 Another common study design
is cohort sampling, where all biobank patients with available data meeting the inclusion criteria are included in the
analysis.38,95

Self-controlled designs in which each patient serves as his/her own control are emerging as an appealing design
paradigm for some scientific problems.96,97 Two variations of self-controlled designs are the self-controlled case series
design and the case-crossover design. Recently, Schuemie et al developed an adapted self-controlled case series design that
uses the notion of accumulated exposure to study long-term drug effects.98 A detailed comparison of the self-controlled
case series and case cross-over designs can be found in MacClure et al,99 and additional exploration of self-controlled
case series can be found in Petersen et al100 and Simpson et al.101 An advantage of this design is that it controls for
confounding due to time-invariant variables. Unlike cohort and case-control designs, however, this method requires lon-
gitudinal data to be available for all patients, which may be missing, incomplete, or insufficient in some EHR-linked
databases.

http://wileyonlinelibrary.com


Due to finite resources, some biobanks may collect data, for example, genotype data, on a subset of their cohort.
The strategy of collecting data on a subset of patients enriched for certain characteristics and related issues are explored
in detail in Sun et al102 and Schildcrout et al.103,104 Two-phase designs also result in missing data by design, where
more expensive assays or time-consuming surveys may be administered to a subset of the patients determined based
on results from the first phase. Exposure-dependent (eg, when we have rare exposures of interest) and other stratified
trait-dependent sampling designs can also be used. For example, extreme phenotype sampling designs collect additional
data only for patients with extreme values of a continuous variable.105,106

Another critical concept to consider when defining the study sample is the independence between patients. Lon-
gitudinal outcomes are expected to be correlated within patients, and outcomes may be correlated between patients
due to relatedness, nesting within doctor or clinic, belonging to a common social network, or other reasons. The soft-
ware KING (Kinship-based Inference for GWAS) uses genotype data to determine pairwise kinship between patients.107
We might then define the study sample restricted to unrelated patients and apply methods that rely on independence
between patients (eg, Firth-corrected logistic regression in Fritsche et al10). Statisticalmodeling approaches such asmixed
modeling (eg, SAIGE) can also be used to account for residual correlations between individuals.108

Many variations and alternative strategies for designing the study sample exist in the statistical literature and can
also be applied in the EHR setting. For a review of many general study design strategies, seeModern Epidemiology: study
design and data analysis.109,110

3.2.2 Considerations related to study design

Madigan et al compares effect estimates resulting from several study designs in a particular setting and demonstrates that
the choice of study design can have substantial impacts on effect estimates.111 These study design choices also impact
the statistical power and generalizability of the results. Therefore, the study design should be considered carefully. In
addition to impacting power, the method by which the patients are included in the study sample may result in biased
inference (with respect to the target population), called sampling bias. Haneuse et al provide a general framework for
exploring and dealing with design-based sampling bias for EHR analyses.112 Haneuse et al focus on characterizing the
mechanism by which patients were included in the dataset by breaking it into smaller observation mechanisms, which
may be impacted by different factors. Possible sources of sampling bias arising from each mechanism can be explored in
detail in a sensitivity analysis framework.

There is a belief in the literature that GWAS/PheWAS study results may be less susceptible to bias resulting from the
patient sampling mechanism, since the opt-in consent is not likely to depend on the value of a single genetic marker.
However, bias due to genotype relationships with the samplingmechanism can still arise in certain settings.33,113,114 Addi-
tional workmay help clarify settings in which bias is and is not expected in GWAS and PheWAS studies. In general, issues
of sampling bias are not unique to EHR data, andmany authors have explored the impact of sampling on inference. Some
works exploring selection/observation biases in the EHR setting include Zheng et al, Phelan et al, Goldstein et al, and
Rusanov et al.30,31,92,115 However, additional characterizations of the mechanisms by which we can have sampling bias in
biobank and EHR research may help guide study design in the future.

In terms of methods designed for large-scale EHR-based studies, Schuemie et al116 and Schuemie et al117 propose
a P-value calibration method that may be able to account for both random and systematic (eg, confounding, sampling
biases) sources of error using distributions of effect estimates believed to be null effects.Modern causal inferencemethods
using the potential outcome/counterfactual framework are also being integrated in biobank analysis.118-120

3.3 Data analysis and modeling

In performing statistical analysis, researchers may have a variety of goals, such as developing a prediction model,
estimation (eg, finding candidate biomarkers, hypothesis-generating studies), causal inference, or hypothesis testing
(eg, is drug A better than drug B). The analysis strategy and concerns will depend on the research goal and the
data considered. In this section, we describe several common modeling challenges encountered in EHR-based data
analysis, and we address specific issues, including multiple testing, handling of missing data, and comparison across
different EHRs.



3.3.1 Modeling

EHR data present many challenges concerning modeling and inference. For example, correlation structures between
variables can be complicated, the number of adjustment factors can be large, and events of interest can be rare. In this
section, we describe some popular and emergent modeling strategies.

A common goal of EHR-based analyses is to study the associations between specific phenotypes and variants at a
particular gene region or across the genome, and this analysis is often performed using linear or logistic regression or
usingmixed linear model association (MLMA) analysis.38,41,121-123 Firth-corrected logistic regressionmay prove useful for
modeling rare binary outcomes or settings in which there is strong covariate separation, and its application to PheWAS is
demonstrated in Fritsche et al.124 Recently, Dey et al proposed a fast alternative to Firth-penalized regression to stabilize
estimation for PheWAS studies using saddle-point approximation (SPA) that is useful for handling extremely unbalanced
case-control data.125 Thesemethods can be applied inmany othermodeling settings aswell. A saddle-point approximation
approach for estimating mixed models (called SAIGE) was proposed for handling highly unbalanced case-control data
with additional sample relatedness, which is typical for biobank data.108 Another common target for these studies is to
identify the proportion of variation in a particular phenotype that can be attributed to genetic variation, called heritability.
Some popular statistical methods include polygenic profile scoring, univariate linkage disequilibrium regression, and
genomic relatedness-matrix restricted maximum likelihood (GREML).38,126-130

A popular strategy for studying the aggregate association between genetic information and disease development is
through polygenic risk scores (PRS). PRS involve summing the contributions of a potentially large number of genetic
loci and can be used to stratify patients with respect to disease risk.131 Many strategies exist for determining the genetic
loci to include in the PRS and their relative contributions. Many PRS construction strategies and software packages exist,
and we will not detail these various methods here.124,132-143 For a recent exploration of PRS construction, we refer the
reader to Choi et al.144 Recently, statistical methods have been developed to leverage published GWAS and other omics
summary statistics to improve the performance of prediction algorithms and perform analyses adjusting for many genetic
loci simultaneously.145-149

Researchers may also be interested in studying relationships between phenotypes or joint relationships between phe-
notypes and other patient-level factors such as treatments or genotypes. Existing statistical methods for dealing with
correlated outcomes such as mixed modeling and generalized estimating equations (when the model coefficients are
of primary interest) can often be applied. Shaddox et al and Xue et al propose strategies for modeling correlated rare
outcomes.150,151 Recently, Bastarache et al developed a phenotype risk score-based method to study rare genetic vari-
ants associated with Mendelian diseases.152 More generally, phenotype-based risk scores could be used to describe the
combined association between secondary phenotypes and the primary phenotype and may prove useful for risk strat-
ification in combination with PRS. However, construction of phenotype-based risk scores would involve modeling the
relationship between many phenotypes, either pairwise or jointly, and this modeling would be complicated by phe-
notype misclassification. Additional statistical development is needed to handle many correlated, misclassified binary
phenotypes.

In probabilistic phenotyping models, risk prediction models, and other modeling using EHR data, we are often inter-
ested in incorporating a broad spectrum of patient information. Variable selection and penalization methods along with
sparse estimation strategies allow many predictors to be incorporated into statistical models, and there is an excellent
opportunity for the use of such methods in the setting of EHR. Automated feature selection algorithms are often used
within machine learning algorithms to determine which predictors to include, and this can also be combined with expert
preprocessing of the candidate predictors.153,154 Regularization techniques, including LASSO, ridge regression, and elastic
net, have been applied in the EHR setting.155,156

Machine learning algorithms have also gained popularity in EHR data analysis, particularly in the development of
risk prediction models. Traditional machine learning methods such as support vector machines and random forests
with boosting are often used.157,158 Deep learning, neural networks, and ensemble methods have emerged as attractive
approaches to prediction using EHR data.158-161 For a review of deep learning methods for EHR data, see Schickel et al.158
Care must be taken when applying these machine learning techniques in the setting of rare outcomes, and additional
model calibration may be needed. A disadvantage of machine learning algorithms is the difficulty in estimating predic-
tion uncertainty. Somework has been done exploring uncertainty estimation in particular settings, but additional work is
needed.162 Machine learning algorithms can have excellent performance for prediction in some settings. When the goal
of the analysis is to develop a prediction model for making predictions for new patients in the same EHR, challenges
such as sampling bias and confounding, may be of less concern. However, the resulting model may be susceptible to



overfitting and may not always have good properties in terms of transportability to other EHRs and generalizability to
other populations.

While we may conceive of many elegant modeling strategies for dealing with statistical issues for EHR data, these
methodsmay not always scalewell with respect to large samples, large numbers of variables, or a large number of repeated
analyses (eg, in a PheWAS or GWAS). Computational feasibility will be an important factor to consider for applying
statistical tools at scale. While computational efficiency strategies are outside the scope of this paper, we refer the reader
to Thompson and Charnigo and Prive et al. for more information on phenome-wide computing for GWAS.163-165

3.3.2 Missing data

Missing data is a common issue for biobank analyses, and data may be missing for a variety of reasons. A common source
of missingness in GWAS/PheWAS studies is missingness in the genotypes. This can be handled by first excluding patients
with missingness rates above a particular threshold (say, 2%) and then imputing missing values for patients with lower
missingness rates.38,128 Genotype imputation has improved over time due to larger and more diverse reference panels.
While many of these biobank analyses reported their treatment of missing genotype data, missing information in the
phenotype information or demographics is rarely discussed. Additionally, many studies define their analytical sample
based on some subset of biobank participants, and it is sometimes unclear how these participants were chosen. A more
transparent description of how the study sample was derived and the treatment of missing data may shed some light on
the generalizability of study results.

Statistical methods for dealing with missing data in the EHR often rely on multiple imputation, a statistical approach
in which the missing data is “filled in” using information from patients with observed values.166-169 Such approaches can
prove extremely valuable to EHR-based research, but implicit assumptions about the missingness mechanisms should
be carefully considered. A common assumption behind many statistical methods for dealing with missing data is that
data are missing at random, meaning that missingness depends only on fully observed information.170 However, missing-
ness in EHR data may often be related to a patient's underlying health state and other unmeasured individual or facility
characteristics.171 For example, healthier patients may be more likely to drop out of the EHR. Additionally, lab tests are
only ordered for patientswith suspected disease. This setting, calledmissing not at random, ismore challenging to address
in the statistical analysis. For a discussion of dealing with missing not at random data, see Little and Rubin.170 In general,
we cannot tell from the data what mechanisms generate the missingness, but additional data and subject matter experts
can provide insight into the drivers of missingness. For example, Haneuse describes a survey-based strategy to explore the
reasons for missingness in EHR data, which may help shed light on the validity of missingness assumptions.172 McCul-
lough and Neuhaus proposes a strategy for exploring outcome dependence in the mechanism by which patients visit the
clinic.171

A common type of “missing” data is the true phenotype state of each patient. We can view the sampling mechanism
that gave rise to our study population and the mechanism behind phenotype misclassifications (which we might call the
observationmechanism) in amissing data framework, as discussed in Section S7 and Beesley et al.33 Further work should
be done to explore the impact of different sampling and phenotyping mechanisms on statistical inference.

3.3.3 Multiple testing of hypotheses

GWAS/PheWAS studies and many other types of EHR-based research often involve the simultaneous testing of many
hypotheses. Failure to account for multiple testing can result in inflated type I error. Some methods for controlling the
type I error include Bonferroni adjustment, false discovery rate-controlling thresholds,41,173 and Benjamini-Hochberg
thresholds.84 However, many of these methods (in particular, the simple Bonferroni adjustment) are overly conservative
when the many statistical tests are not independent. This is often the case in large-scale GWAS/PheWAS studies, where
associations are explored for many related characteristics. In this setting, the goal may be to control for the effective
number of independent tests rather than the number of correlated tests being performed. Such an approachmay improve
statistical power to detect significant associations while still controlling the type I error rate.

Several methods have been proposed to estimate the effective number of tests174 or control for correlated tests. Good
describes resampling-based testing via permutation or bootstrap to correct the P-values for multiple testing.175 Gao et al.
propose the simpleMmethod to estimate the effective number of tests, which uses a combination of principal components



analysis and Bonferroni correction.176 For a PheWAS study presented in Ge et al, the effective number of tests is estimated
using principal components analysis of a matrix of pairwise correlations between pairs of phenotypes.129

Similarly, heuristic approaches have been suggested to identify a maximal independent set of uncorrelated pheno-
types among pairwise correlations between pairs of phenotypes.10,177 A popular method for identifying phenotypes is to
aggregate ICD codes into a set of phenotype codes called “phecodes.” For example, using 1578 phecodes inMGI, we iden-
tified a maximal set of 981 phenotypes with no pairwise Pearson correlation above 0.1. However, no general guidelines
exist for multiple testing correction in the PheWAS setting. Alternative methods adjust for multiple testing using multi-
variate normal assumptions for the correlated test statistics.178-180 In the context of correlated SNPs, somemethods correct
for multiple testing via analysis of the underlying linkage disequilibrium structure of the genetic data.181 Johnson et al,
Zhang et al, and Li et al provide some simulations comparing the performance of different methods.174,182,183

An emerging challenge is the correction of multiple testing across the medical phenome x genome two-
dimensional landscape. With recent work regarding phenotype risk scores, there is increasing interest in studying
phenotype-phenotype associations across the phenome.184 As such, there is a need to develop a corresponding statisti-
cal methodology to correctly account for potentially strong cross-phenotype correlations, which are particularly common
with hierarchically structured phenotypes.

Ultimately, the best strategy for correcting for multiple testing may depend on whether the goal is hypothesis genera-
tion/discovery or validation/hypothesis testing. In the former, we may be more willing to accept false-positive results for
individual tests in exchange for higher power, while in the latter case, we may want to control the rate of false positives
better.

3.3.4 Heterogeneity between biobanks

Researchers often attempt to validate statistical findings from their data analysis using an independent dataset from a
different population. For example, we may wish to validate results obtained using data from one biobank (eg, MGI) by
performing the same analysis for another biobank (often, UKB). Here, we make a distinction between validation and
replication, where replication involves comparing results in samples drawnwith few systematic differences from the same
population and validation involves comparing results in samples drawn from different populations or using different sam-
pling approaches.185 Systematic differences between the population characteristics or sampling mechanisms, however,
could impact the generalizability of results between populations and impact our ability to validate findings.

In the meta-analysis literature, heterogeneity between studies is broadly grouped into three categories: clinical hetero-
geneity (differences in patients, interventions, and effects),methodological heterogeneity (differences in study design and
sampling), and statistical heterogeneity (when the observed effects are more variable across studies than we would expect
from random chance). Statistical heterogeneity may be a result of clinical and/or methodological heterogeneity.

Some analyses may be more impacted by differences between biobanks. As a demonstrative example, we compare
the results of different data analyses using data from MGI and UKB. These biobanks exhibit substantial methodological
heterogeneity concerning their sampling mechanisms, where MGI is based on an academic medical center and UKB is
population-based. Suppose we are interested in comparing the odds ratio for having a particular phenotype based on the
status of another phenotype, called phenotype co-occurrences. While prevalences will be impacted by the different sam-
pling designs between MGI and UKB (see Figure 2), it is not clear how phenotype-phenotype associations will compare.

Figure S6 presents the estimated log-odds ratios of having a phecode diagnosis of melanoma regressed on other diag-
noses in the phenome. See Section S5 for details on the phenotype generation procedure. The estimated odds ratios from
the UKB data tend to be larger in magnitude compared to the odds ratios in MGI (for 70% of diagnoses). One possible
explanation for this phenomenon is that in order for patients to get a phecode in UKB, they must visit a health care
provider, during which time they may get multiple codes. When we compare UKB patients who did and did not receive a
particular phecode (perhaps they did not visit a health care provider or did not visit as often), wemay obtain inflated odds
ratios. The patients in MGI are enriched with phecodes across the board, but patients with and without a particular phe-
notype may have many opportunities to collect other diagnoses through their interactions with the health care provider.
In this melanoma example, the odds ratios for other neoplasms did not exhibit the same differences in MGI and UKB as
seen for other classes of diseases. This may be due to enhanced screening of these diseases after diagnosis of melanoma
in both MGI and UKB.

Wepredict the heterogeneity of the samplingmechanismsmay not appreciably impact some associations; for example,
GWAS results. In Figure 5, we compare GWAS results inMGI andUKB for several cancers. In this figure, points represent
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F IGURE 5 Comparison of GWAS results in MGI and UK Biobank for selected cancer phenotypes. Each point represents a SNP
identified as being related to the corresponding phenotype in the NHGRI-EBI GWAS catalog. The point location corresponds to the log-odds
ratio association between the SNP and the phenotype of interest in MGI and UK Biobank. The two lines correspond to equality of the
estimates and a fitted line to the points (excluding any outlying points with absolute log-OR greater than 0.6). “Spearman” indicates the
Spearman correlation and “CCC” indicates Lin's concordance correlation coefficient, which is a measure of agreement (with 1 being perfect
agreement) [Color figure can be viewed at wileyonlinelibrary.com]

SNPs identified as being related to the corresponding phenotype in the NHGRI-EBI GWAS catalog.186 See Section S8 for
details. While MGI and UKB have very different sampling mechanisms, the GWAS results generally appear similar.

In addition tomethodological heterogeneity, clinical heterogeneity could impact validation of results across biobanks.
Some examples of clinical heterogeneity include differences in patient demographics, or the kinds of treatments pre-
scribed, screening practices, andwhether health care is public or private.An example of clinical heterogeneity forMGI and
UKB is age, where MGI consists of patients aged 18 and up, while UKB consists of patients aged 40-69. If the association
of interest depends on age, we would have different marginal associations in MGI and UKB. Another notable difference
between biobanks/EHRs is how physicians encode diagnoses within the ICD framework. For a given patient, physicians
in one EHRmay tend to enter diagnosis A, while physicians in another EHRmay enter related diagnosis B. This presents
a problem for researchers seeking to validate diagnosis code-based phenotype associations across biobanks. Additionally,
wemay be interested in using biomarker or lab value measurements across biobank datasets, and these may be measured
with different degrees of error.187 When comparing this association overall between two different populations, a failure
to adjust for the clinical heterogeneity across the two populations could result in biased inference.

In the presence of this heterogeneity between study populations, we may explore statistical methods to improve our
ability to compare between different populations. There is a body of statistical literature for quantifying and handling
between-study heterogeneity via meta-analysis.188-191 Weighting-based and resampling-based methods for dealing with
heterogeneity have also been explored.192-194 The large number of subjects and the large number of available adjustment
factors in EHR data provide an opportunity to effectively addressmore refined questions such as the relationship between
treatment andmolecular subgroups of disease (inherently a question of interactions) directly, potentially allowing clinical
heterogeneity to be handled directly through a redefinition of the quantity of interest.195 Recently, Shi et al developed a
spherical regression-based method for handling heterogeneity in ICD code designation across different EHR systems.196
Methodology in the data integration literature may also prove useful for addressing these challenges.197 Future workmay
explore resampling-based methods to make studies more comparable in the presence of heterogeneity with respect to the
sampling mechanism.

4 EMERGING USES OF ELECTRONIC HEALTH RECORD DATA AND
COMBINATION WITH EXTERNAL DATA

There is a tremendous opportunity to incorporate additional data to enrich EHR and enhance the scope of research.
For example, we may link cancer and death registry information to the EHR to study survival and disease-related out-
comes after clinical diagnosis. Local and national surgical registries offer opportunities for studying more granular
health-related outcomes. When registry data is not available, claims data may also provide some insight for survival and
disease-related research.198 Recent work has developed methods for defining the exposome based on clinical narrative
information or additional patient-levelmeasurements.199,200 Geo-codeddata canprovide awealth of exposure information
including social determinants of health, neighborhood characteristics, socioeconomic status, and pollution
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information.201-206 Freely available resources like the eICU Collaborative Research Database207 are becoming more
common and increasingly accessible, allowing for additional exploration of data and aggregation for larger analyses.

Longitudinal data within the EHR and beyond also offer many opportunities for research. Mobile fitness tracking
devices provide an opportunity to incorporate longitudinal healthmetrics or even use text messages or game performance
to define phenotypes.208,209 Noren et al, Noren et al, and Boland et al use longitudinal health data to discover and adjust
for temporal patterns.210-212 Longitudinal EHR data has proven to be extremely useful in the fields of pharmacovigilance,
pharmacoepidemiology, and pharmacogenomics.211,213-217 Additional work leverages large-scale medical data to study
potential new indications for existing drugs, called drug repurposing or repositioning.218 Longitudinal EHR data can also
be used to develop dynamic predictions for patient prognosis, adverse events, etc., over time.219-222

When combining data from multiple disparate sources, several problems arise. Most notably are issues regarding
patient privacy. Additionally, we must consider issues such as data processing and rules for linking records for a single
patient. Many statistical methods have been developed for linking records corresponding to individual patients across
data sources, and many of these methods explicitly address issues of privacy.223-227 Statistical methods have also been
developed for combining data across distributed data sources where data from individual patients are not accessible.228,229
Yang et al. developed methods for performing meta-analysis based on existing GWAS, and similar methods should be
developed for PheWAS studies in the future.230

Large biobank datasets also provide an opportunity to study different treatment pathways and their corresponding
outcomes.231 Additional components such as treatment nonresponse and treatment adherence can also be explored.54,232
While such studies are certainly not new, the wealth of information provided through EHRs provides opportunities to
study treatment-related outcomes at scale. Additionally, these data sources provide a clearer look at treatment-related
outcomes in practice, which may not always align with outcomes under more ideal settings of a clinical trial. These data
can be used to analyze and/or predict various outcomes to treatments, medications, and/or dosages (sometimes stratified
by patient characteristics).

EHR have also been used for disease forecasting, where researchers use electronic health records to determine pop-
ulation rates of disease and forecast future rates.233,234 Disease forecasting is a challenging problem, and EHR-informed
forecasts can prove extremely useful for medical staffing, vaccine production, and policymaking.235

5 CONCLUSION

Biobanks linked to EHR provide rich data resources for health-related research, and scientific interest in biobank-based
research has grown dramatically in recent years. As more researchers become interested in using biobank data to explore
a spectrum of scientific questions, resources guiding the data access, design, and analysis of biobank-based studies will
be crucial. This work serves to complement and extend recent publications about biobank-based research and aims to
provide some statistical and practical guidance to statisticians, epidemiologists, and other medical researchers pursuing
biobank-based research.5-8

In this paper, we provide a detailed characterization of many of the major EHR-linked biobanks to facilitate
researchers' ability to obtain and investigate research-quality biobank data with some understanding of the associated
population, sampling mechanism, and data linkages. This characterization provides a useful starting point for under-
standing the types of biobank data available and for requesting and accessing data. We also survey biobank-based papers
that have been published. Future research can utilize increasingly large EHR-linked biobank cohorts to study a broad
range of diseases. Biobank data also present an exciting opportunity to explore treatment and therapy schedules, drug
repurposing, or gene-by-treatment interactions in the future. Such explorations can also be used to inform dynamic,
patient-centric predictions for monitoring and treating future patients.

When using biobank data for health-related research, it is essential that researchers understand the statistical and
practical issues that accompany such analyses and have resources to address them. There is a great need for statisti-
cal developments to address the many varied issues that go hand in hand with EHR-based research. Our discussion is
structured to address statistical issues and strategies that researchers encounter when following a typical research study
structure (see Figure 1).

Given our research question and data availability, the next step is generally to identify potential sources of bias. In this
paper, we describe several particular concerns of confounding bias, selection bias, and misclassification of EHR-derived
phenotype variables. Researchers should carefully consider issues of phenotype misclassification both in terms of ICD
code-based phenotyping and in terms of the limitations of the EHR as awhole. A better understanding of themechanisms



governing misclassification (in terms of under- and over-reporting of disease) may help shed light on the limitations of
the EHR data and how to deal with potential information biases that result. Biases, in terms of patient selection into the
biobank/EHR and in terms of study design using EHR data, need to be carefully considered. Many statistical methods
exist for addressing issues of nonprobability sampling in particular, and additional work looking into the mechanisms
driving patient selection for EHR may help researchers better generalize results to their target populations.

Historically, a large body of statistical work has focused on studying how we can most efficiently use available data
to estimate our quantity of interest. As the size of the data grows, however, efficiency becomes less and less of a concern
and characterization of bias becomes critical.236 This is particularly important in the study of EHR, where many possible
sources of bias can come into play and the data generationmechanisms are often difficult to characterize. The recent push
away from P-values and dichotomization of study results in the statistical community reflects these changing perceptions.
Increased emphasis must be placed on reproducibility and scientific rigor, particularly when large repositories of data are
being made widely accessible.

Given a large pool of EHR and biobank data, the next step is to design our study using the data available. One consid-
erable challenge involves defining the phenome, and future work can explore ways to incorporate a broader spectrum of
EHR information into phenotype classification. Defining exposure and outcome variables can be particularly challeng-
ing for EHR-based data. For example, suppose we are interested in studying relationships between genetics and smoking
behavior. Smoking behavior may not be directly recorded in the EHR, and careful thought is needed to determine how
we can use EHR information to extract these data and the possible implications for the veracity of resulting statistical
inference. We also need to clarify which patients we will include in our analyses. In many cases, this may consist of all
available patients, but careful subsampling of the large pool of available to define our study dataset can also be used to help
mitigate possible sources of bias, can reduce computational burdens of large data, and can identify subjects for additional
data collection.

Once we have designed our study, the next general step is data analysis. Many issues need to be considered, including
how we want to model the data, correction for multiple testing, and handling of missing data. The treatment of miss-
ing data in EHR-based studies is an area in particular need of additional statistical development. For example, analyses
wishing to include lab values as predictors need to reconcile somehow the inherent relationship between missingness
(whether a given test was ordered) and the test results. Data can be missing for a variety of reasons, and the mechanism
generating the missingness can have serious implications on inference. Statistical methods tailored to handling issues of
missing data in EHR could prove extremely useful. In general, reporting of how missingness was handled needs to be
more explicit in studies using EHR. Additional statistical methods are also needed to handle multiple testing adjustment
for studies involving many correlated phenotypes or studies exploring the phenome x genome landscape. In general,
there is a strong need for the development of statistical methods to address the many and varied challenges we face when
analyzing EHR-linked biobank data.

The combination of genetic and phenotypic information (eg, through polygenic and phenotype risk scores) presents
a big opportunity for improving risk prediction, and future work can attempt to interrogate these different types of
patient-level information to untangle the genetic and environmental factors related to disease generation and risk. With
an increase in the volume and variety of data becoming available, emphasis should be placed on methods for incorporat-
ing data from external sources and emerging data streams (for example, geo-coded data, longitudinal biomonitoring data,
mobile data, registry data, genomics/metabolomics data, imaging data, ecologic data, etc.). Such analyses can widen the
scope of scientific questions we can address, and they necessitate a new wave of related statistical methods.
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